Exercise 90

The volume of a right circular cone is $V = \frac{1}{3}\pi r^2 h$, where r is the radius of the base and h is the height.

- (a) Find the rate of change of the volume with respect to the height if the radius is constant.
- (b) Find the rate of change of the volume with respect to the radius if the height is constant.

Solution

Part (a)

If the radius is constant, the rate of change of the volume with respect to the height is

$$\frac{dV}{dh} = \frac{d}{dh} \left(\frac{1}{3}\pi r^2 h\right) = \frac{1}{3}\pi r^2.$$

Part (b)

If the height is constant, the rate of change of the volume with respect to the radius is

$$\frac{dV}{dr} = \frac{d}{dr} \left(\frac{1}{3}\pi r^2 h\right) = \frac{2}{3}\pi r h.$$